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Ah&net-The conduction equation is solved for the temperature distribution in a thin plate having 
convection losses on all boundaries and being heated by a moving discrete source. The solution is based 

on the properties of an Hermitian operator and its orthogonal basis vectors 

NOMENCLATURE 

constants of integration ; 
width of plate [ft] ; 
thickness of plate [ft] ; 
constants of integration; 
constant ; 
function; 
transform of F; 
convection coefficient 
[Btu/h-ft’degR] ; 
integer ; 
total number of contacts; 
integer ; 
conductivity [Btu/h-ft-degR] ; 
linear differential operator ; 
adjoint operator ; 
length of plate [ft] ; 
Biot Number [dimensionless] ; 
source [Btu/h-ft3] ; 
energy released at jth contact [Btu/ft] ; 
transform of Q ; 
time [h] ; 
vector function of x; 
vector function of x ; 
temperature [degR] ; 
temperature of surroundings [degR] ; 
transform of W ; 

distance [ft] ; 

~. _ 

t Supported by the National Aeronautics and Space 
Administration Grant No. NGR-32-003-027. 

Y, distance [ft] ; 

Z, distance [ft]. 

Greek symbols 

; 

thermal diffusivity [ft2/h] ; 
eigenvalue [dimensionless] ; 

‘I’, eigenvalue [ l/ft] ; 

6, Dirac delta function ; 

8, eigenvalue [ l/ft] ; 

4 eigenvalue [ l/ft’] ; 
0 

L, “9 

constant in u&x) [dimensionless] ; 
derived constant [l/h]. 

INTBODUCIION 

THE TEMPERATURE distribution in solids due to a 
moving source has extensive application in 
sliding friction, internal ballistics, machining 
and in metal treating operations such as 
welding, casting, quenching and flame harden- 
ing [l]. 

Spraragen and Clausen [2], in 1937, reviewed 
the literature on the subject of welding In a 
classic paper, Rosenthal [3], in 1946, developed 
the quasi-steady state theory for a uniform 
source moving at a uniform velocity in an in- 
finite medium in the direction of motion. 
Carslaw and Jaeger [4] give solutions to 
problems of this type using sources and sinks, 
and also by the use of Green’s function. 

Slinn [S] in a recent article, points out the 
advantage of using transforms over traditional 
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methods to solve linear partial differential 
equations, because of increased generality of the 
method, and the ease of solution when the 
transform properties are known. 

In this paper, using methods discussed by 
Lanczos [6] concerning linear differential opera- 
tors, the operator is shown to be Hermitian, its 
eigenstructure is analyzed, an inner product and 
a transform are defined, and an identity con- 
cerning the transform of the second derivative 
is developed. Using the transform identity, a 
very general type of solution for the temperature 
distribution in a thin plate subject to the heating 
of a moving discrete source is determined. 

PROBLEM 

The conduction equation for a thin plate with 
a source and losses on all the boundaries by 
convection (covers the range from constant 
temperature boundaries to insulated bound- 
aries) is 

a* Wx, Y, 0 + d2Wx, Y, 0 (h + h*P% Y, t) 

ax* ay* - kb 
+ Q(X, Y, t) 1 awk Y, t) -= -~- 

k at (1) 
a 

where 

tt: temperature 
h, convection coefficient, upper surface ; 
h,. convection coefficient. lower surface; 
k, conductivity; 
b, thickness of plate ; 
Q, source ; 

a, thermal diffusivity. 

The boundary and initial conditions for a plate 
having losses at the edges due to a convection 
coefficient h when the surroundings, W, are at 
zero (see Fig. 1) are : 

1 awn Y, t) = hw(o, Y, 0 
ax k -’ 

2 aW(i, Y, 4 -hW, Y, t) 

ax = k ) 

3 a Wx, 0, t) h Wx, 0, t) 
ay = k ’ 

4 awx, a, t) - h W(x, a, t) 

ay = k 

5. Wx, y, 0) = F(x, Y). 

To solve equation (1) subject to the boundary 
and initial conditions shown, it is necessary to 
develop the properties of a special linear 
operator L. 

FIG. 1, Thin plate boundary conditions. 

HERMITIAN CHARACTER OF 15 

The linear differential operator, we require, 
that operates on u is 

Lu = e 
dx* 

(2) 

where the relationship between a vector u and 
its components is analogous to 

Ul 
u2 

UC ’ II (3) 

u: 

in the discrete case, in some basis. The operator 
L is defined in the domain, 
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D(L) : 44 ; O<x<I 

u’(0) = k k9 
u’(l) = - i hu(o 
O<h<m 

O<k<oo 

and has the inner product 

(4~) = $Wx)dx (4) 

where the bar denotes complex conjugate. 
Using Lannos’ bilinear identity [7], where 

L? is the adjoint operator, we have 

(v, Lu) = (L?v,u) (5) 

and integrating by parts gives 

and so L is an Hermitian (self-adjoint) operator. 
It is known that an Hermitian operator has an 
orthogonal basis consisting of the eigenvectors 
of L. 

EIGENSPACE OF THE HJZRMlTIAN OPERATOR L 

To determine the eigenvectors of L, we must 
solve the equation 

Lu = k (10) 

2=0: 

d2u o 
&z= (11) 

u(x) = Ax + B. (12) 

Boundary conditions : 

” 

If the adjoint operator I? is defmed in the 
domain, 

II(JY) : u(x) ; O<x<l 

u’(0) = iv(O) 
o’(l) = 

h 
- ,m 

O<h<m 

O<k<oo 

i.e. the same domain as the operator L, then 

(L?v,n) = /$dx = /%dx. 

0 

It follows then that 

C” = d2o 
dx2 

and 

d2 
L*=_=L 

dx2 

Using the boundary conditions listed gives the 
eigenvector solution 

o(x) = 0 (13) 

and there are no eigenvectors for the eigenvalue 
I = 0, and thus the null space N(L) of the 
operator is empty. 

1 #O: 

d2u 
_i=b 
dx 

(14) 

Defining 

Iz 2 = -y (15) 
(7) 

results in the solution of equation (14) as 

u(x) = crcosyx + c2sinyx (16) 
(8) 

Using the boundary conditions gives the eigen- 
value equation 

(9) 
2 BNm 

tan p = 82 _ N,2 (17) 
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Path of moving discrete 
source in x direction 

Path of moving discrete 
source in y direction 

Front view Side view 

FIG. 2. Thin plate heated by a moving discrete 
source. 

where and the eigenvectors are 

B = Yl (18) u&x) = cos ynx + 0” sin y,x (22) 

NBi =; (19) 
where 

h 

and 
0” = Icy, (23) 

B = B1,Bz,lL...,/L . . . . (20) An arbitrary vector F(x) can be expanded in this 

Plots of the first ten eigenvalues for various 
basis by the expansion 

arguments of N,i are shown in Fig. 3-9. Thus 
the eigenvalues of L are 

F(x) = f W,(W) (24) 
II=1 

&+_y+- !+ 

2 

0 (21) 

FIG. 3. Eigenvalues for Ngi = OGOI 

where 

Cu., W 2/3:-h F) 
” = (Un, = r[Sn” + N~i + 2N,i]’ 

(25) 

TRANSFORM OF THE SECOND-ORDER 

DERIVATIVE 

If we define the following inner product as the 
transform of F, 

(4, F) = d U,(W) F(x) dx = f(r.) (26) 

then 
I 

(u,, F”) = 
c 

u, (y,x) $ (x) dx. (27) 

0 
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FIG. 4. Eigenvalues for N,, = 0.01. FIG. 7. Eigenvalues for Ng, = 10 

FIG. 5. Eigenvalues for N,, = 0.1. 

a3 

-f*W) 
-. - 

-6. 

SO 8 
. 

I 

-2 - 11’ f*(B) 
-4 - 

FIG. 8. Eigenvalues for N,, = 100. 

FIG. 6. Eigenvalues for N,, = 1. FIG. 9. Eigenvalues for N,, = 1000. 
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Integrating by parts, and using the known NATURE OF MOVING DISCRETE SOURCE 

properties of u&,x), we obtain the transform 
identity 

For a moving source that releases energy in 
arbitrary, discrete amounts, at arbitrary, dis- 

Cu.,0 =&%) ~(O+$-j 

Crete points (in the manner of spotwelding) (see 
Fig. 2), the source term is given by 

- u,(O) [F’(O) - ;f(o)l - Y,’ f(r.). (28) 
Q(? YP t) = j$I Qj 6(X - Xj) &.Y - Yj) d(t - tj)* 

(29) 

SOLUTION 

Taking transforms of equation (1) and the boundary and initial conditions by means of the 
transform 

<u,, F) = d u,(Y,x) F(x) dx = $ F(x) wA,J) dx = J”(L) 

where 

YJ = &lx m = 1,2,3,. . . 

gives rise to the partial differential equation 

(30) 

Wa) 

(4 + 4) 
kb 

1 
w(Y,, Y> 0 + $ (Y,, Y, t) = ; 2 (Ym Y9 t) (31) 

and its accompanying boundary and initial conditions : 

1. 5 (Ym, O,t) = ; MY,, 0, t) 

2. 2 (ym, a, t) = - ; w(y,, a, t) 
JY 

3. W(Y,>Y,O) = S(Y,,Y) 

and where 

q(ymv Y, t) = i Qk Y, t) u,(Y,,J) dx 
0 

(32) 

and 

J-(Y,> Y) = 6 F(x, Y) u,(Y,x) dx. (33) 

Taking transforms of equation (31) and its accompanying initial condition by means of the 
transform 

<u,, F) = [ u,(&Y) W dY = a KY) U&Y) dY = f(R) (34) 

where 

&a = P,, n = 1,2,3,. . . Wb) 
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gives rise to the ordinary differential equation 

dw 
dt (k 8,, r) + a 

and its initial condition : 

1. w(v,, en, 0) = fbk, 0,) 

where 

and 

4(k k t) = i 4(ym. y, r) n.(ea) dy 

f(r,> 0,) = a f(r,, Y) u,(~,Y) dy. 

The solution to equation (35) using the initial condition is 

W(Y,, %, 0 = _I%,, 0,) exp (- 1(1,. .t) + a/k NIL,, fL t) *exp (- A,. d) 

where 

I),,. = a [ y$ + 6,” + @’ Lh2) 
1 

and 

4(ymV tL r) *exp ( - A,. “0 = d dYm, h, 4 ev [ - ICI,, .(t - ?)I &. 

Using equation (29), equation (40) becomes 

q(Y,, b r) *exp(-k,.r) = jiI QJUm(YmXj) u.(bJ exp C-+,..(t - tJI 

and equation (38) can be written as 

W(Y, em0 = fb, 6,) exp (- +,,,.A + a/k f Qj um(Ymxj) u,(eyj) exp [ - $,,,, .(t - tj)]* 
j= 1 

Using the expansion equation the solution can be written as 

w, Y, t) = f c c&n9 wx9 Y9 0) ” (y 

(urn, Yn> m ln 
x) 

m=l 
m=l 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

(40a) 

(38a) 

(41) 

(42) 

where 

NBi(l) =; 
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and similarly 

m 

whm YT 0 = f C” Ql(e”y) = c <uPI, whn, Y9 t)> 
%(O"Y) 

n=l (U”, %> 
n=l 

2 m 

c 

P,’ W(Y,, RI> t) =- 
a “= 1 [fin” + N&(U) t 2N&U)] uAeny) (43) 

where 

N,i(U) = t. 

Dropping the vector notation, the solution becomes 

VW 

(45) 

or in a slightly expanded form 

4, m 

wx, Y, t) =$ cc Btx %n(Y,X) u?tY) 

m=l I¶=1 
IX + NM + 2N40] [8,” + N&(a) + 2N,i(a>] 

{ii f% Y) Um(YmX) 4(&Y) dx dy + a/k j$l Qj Um(Ymxj) un(eaj) exp ($,,,tj)} exp (-I,//,, J) (46) 

for 0 < x < I, 0 < y < a, and t ,< t,. 

For 

ti <t < ti+l,i= 1,2,3,... (47) 
where 

l<i<J (48) 

the solution is the same as equation (46), except that the summation onj stops at i instead of J. 
For 

o<t<t, (49) 

then the solution, equation (46), has none of the terms involving the summation on j. 
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R&snsn&-L’equation de la conduction est rtsolue pour la distribution de temperature dam une plaque 
mince ayant des pertes par convection sur toutes ses frontibres et chat&e par une source ponctuelle en 
mouvement. La solution est bas&e sur les proprietbs d’un optrateur hermitien et de ses vecteurs orthogonaux 

de base. 

Zusanunenfasaung-Die Leitungsgleichung wird geliist fiir die Temperaturverteilung in einer diinnen 
Platte, die von einer bewegten Einzelquelle beheizt wird und Konvektionsverluste an allen Berandungen 
aufweist. Die Lijsung beruht auf den Eigenschaften eines Hermite Operators und orthogonalen 

Basisvektoren. 

AmoTaqm-PemeHvre J'paBHeHUR Tt?IIJIOIIpOBOJJHOCTli IlCIlOJlb3yeTCR JI(JlJ4 IlOJlJ'W!HHll 

TeMnepaTypHOrO pacnpeneneann B TOHKOi nzacrnne, HarpesaeMoB ~BH~YIIJEIMCII nncnper- 
HbIM MCTOYHIlKOM Ilpll HaJIWiHll KOHBeKTHBHbIX TeIIJIOIlOTepb Hii BWX l-paHliqEiX, PeIIIeKIW 

OCHOBaHO Ha CBOtiCTBaX OIIepElTOpEI 3PMRTB I4 el'0 OPTOrOHaJIbHbIX 6asacnhrx BeKTOpaX. 


