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Abstract—The conduction equation is solved for the temperature distribution in a thin plate having
convection losses on all boundaries and being heated by a moving discrete source. The solution is based
on the properties of an Hermitian operator and its orthogonal basis vectors.

NOMENCLATURE

constants of integration ;
a, width of plate [ft];

b, thickness of plate [ft];

1, €5, constants of integration;

Cps constant ;

F, function;

£, transform of F;

h, convection coefficient
[Btu/h-ft>-degR];

i, integer ;

J, total number of contacts;

s integer;

k, conductivity [Btu/h-ft-degR];

L, linear differential operator;

I*, adjoint operator ;

l, length of plate [ft];

N,  Biot Number [dimensionless];

0, source [Btu/h-ft*];

Q; energy released at jth contact [Btu/ft] ;
q, transform of Q;

t, time [h];

u(x).  vector function of x;

v(x), vector function of x;

W, temperature [degR];

W, temperature of surroundings [degR];
w, transform of W ;

X, distance [ft];

t+ Supported by the National Acronautics and Space
Administration Grant No. NGR-32-003-027.

s distance [ft];
z, distance [ft].

Greek symbols
a, thermal diffusivity [ft?/h];

B, eigenvalue [dimensionless];
v, eigenvalue [1/ft];
d, Dirac delta function;

0, eigenvalue [1/ft];

A, eigenvalue [1/ft?];

Cp constant in u,(y,x) [dimensionless];
Yma derived constant [1/h].

INTRODUCTION

THE TEMPERATURE distribution in solids due to a
moving source has extensive application in
sliding friction, internal ballistics, machining
and in metal treating operations such as
welding, casting, quenching and flame harden-
ing [1]. ’

Spraragen and Clausen [2], in 1937, reviewed
the literature on the subject of welding. In a
classic paper, Rosenthal [3], in 1946, developed
the quasi-steady state theory for a uniform
source moving at a uniform velocity in an in-
finite medium in the direction of motion.
Carslaw and Jaeger [4] give solutions to
problems of this type using sources and sinks,
and also by the use of Green’s function.

Slinn [5] in a recent article, points out the
advantage of using transforms over traditional
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methods to solve linear partial differential
equations, because of increased generality of the
method, and the ease of solution when the
transform properties are known,

In this paper, using methods discussed by
Lanczos [6] concerning linear differential opera-
tors, the operator is shown to be Hermitian, its
eigenstructure is analyzed, an inner product and
a transform are defined, and an identity con-
cerning the transform of the second derivative
is developed. Using the transform identity, a
very general type of solution for the temperature
distribution in a thin plate subject to the heating
of a moving discrete source is determined.

PROBLEM
The conduction equation for a thin plate with
a source and losses on all the boundaries by
convection (covers the range from constant
temperature boundaries to insulated bound-
aries) is

P*W(x, y,1) N FPW(x,y, 1) (hy + h))W(x,y,1)
Ox? oy? kb
o(x, y, 1)
Tk

oW(x, y, 1)
ot

(1)

!
a

where

W, temperature

h, convection coefficient, upper surface;
h,. convection coefficient. lower surface ;
k, conductivity ;

b, thickness of plate;

Q, source;

a, thermal diffusivity.

The boundary and initial conditions for a plate
having losses at the edges due to a convection
coefficient h when the surroundings, W, are at
zero (see Fig. 1) are:

oW(0,y,t)  hW(0,y,1)
0x - k ’

aW(L ¥ t) _ —hW(l, Y t)

2 Ox k ’
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oW(x,0,¢) hW(x,0,1)

3. 3y p )
oW(x,a,t) —hW(x,a,t)
4. =
dy k

5. W(x,y,0) = F(x, )

To solve equation (1) subject to the boundary
and initial conditions shown, it is necessary to
develop the properties of a special linear
operator L.

>

/

FiG. 1. Thin plate boundary conditions.

HERMITIAN CHARACTER OF L
The linear differential operator, we require,
that operates on u is
d?u

="
U= i

@

where the relationship between a vector u and
its components is analogous to

in the discrete case, in some basis. The operator
L is defined in the domain,
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O0<x<l

w(0) = §u)

D(L): u(x);

, h
“(I)—"ic'“(l)
O<h<
O<k<oo

and has the inner product

4
(g, v) = 3; u(x) v(x) dx 4

where the bar denotes complex conjugate.
Using Lanczos’ bilinear identity [7], where
I? is the adjoint operator, we have

v, Luy = (v, u) &)
and integrating by parts gives

]
+Jazszudx. 6)

1 d; 1
— U

o dx

~du
* =7 —
{v,u) =0 i

dx?
[J]

0

If the adjoint operator I* is defined in the
domain,

D(I*): x); 0<x<l
uw)=2vm)
o) = — 2 ¥()
O<h<o
O<k<oo

i.c. the same domain as the operator L, then

i i
(I*V,u) = jgudx = Jlrvudx. W)
[} 0

It follows then that
d%v

I* = E.F (8)

and

P=—=L ©)
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and so L is an Hermitian (self-adjoint) operator.
It is known that an Hermitian operator has an
orthogonal basis consisting of the eigenvectors
of L.

EIGENSPACE OF THE HERMITIAN OPERATOR L

To determine the eigenvectors of L, we must
solve the equation

Lu = Ju (10)
A=0:
d%u
u(x) = Ax + B. (12)

Boundary conditions:

h
L W(0) = L uO)

h
2 ()= —pul)

Using the boundary conditions listed gives the
eigenvector solution

ox) =0 (13)

and there are no eigenvectors for the eigenvalue
A =0, and thus the null space N(L) of the
operator is empty.

A#0:

du

e (14)
Defining

A= —y? (15)

results in the solution of equation (14) as

u(x) = ¢, oS yx + C, sin yx (16)

Using the boundary conditions gives the eigen-
value equation

2 BNy

tan f = ———— 2
B =N,

{17



1284

Path of moving discrefe
source in x direction
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Path of moving discrete
source in y direction

z
Q Q.03 Q@ Qv

e _ L] |

-
L

It

I

il HW

Y V2 )3 I/ /A 2N

a

Side view

plate heated by a moving discrete

source.

X X2 X3 XX Xy xy
¢ |
Front view
Fig. 2. Thin
where
B =1yl (18)
hl
P kie 19
Nu=7 (19)
and
ﬂ=ﬁ1,ﬂ2’ﬁ3’---’ﬂm--" (20)

Plots of the first ten eigenvalues for various
arguments of Ny, are shown in Fig. 3-9. Thus
the eigenvalues of L are

A=dy= -1 = (21)

£(B) =ton B

ﬁ 8/
”l

f2(8) =
H

Fi1G. 3. Eigenvalues for Ng; = 0-001.

and the eigenvectors are

u,(y,x) = cOs y,x + g,5in y,x (22)
where
h
g, = T (23)

An arbitrary vector F(x) can be expanded in this
basis by the expansion

R = 3 em) (24)

where

282w, B
I[B2 + N3 + 2Ng]

(B
T Gy

@5

TRANSFORM OF THE SECOND-ORDER
DERIVATIVE
If we define the following inner product as the
transform of F,

Cup, F) = fu,(y,%) F(x)dx = f(y,)  (26)

O ey -

then
I

2
(o, F'S = j“—u, 7 s () dx. (2)

0
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7,{B) = ton B

FiG. 4. Eigenvalues for Ng, = 0-01.

4f(B) =ton B

28Ny,
Al -

FiG. 5. Eigenvalues for Ny, = 0-1.

l

7,(B) = ton B

2 BNy
Hi{B)s —
2(8) 52‘”:‘/

':( 8)

'
N

'
»

\5
WA EAY I

/4(8)

i

FiG. 6. Eigenvalues for Ng, = 1.

™
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] f,{B) =ton B

28Ny,
KRB ——
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HB)

I/
\ 25\ \so
B3| By [ Bio

FiG. 7. Eigenvalues for Ng; = 10.

3
l fi(B) = tan B
£,(BY 28Ny,
o p? .
I 2 (8) m
2
L] 8] (B ] T. 7/ Be of PBio|
&, [ o [ 20 28 30
< Y —F
-2t /
s #(8)
s
-8
FiG. 8. Eigenvalues for Ny, = 100.
6
| [ 7,08) » tan B
LB 28Ny
o H(B)=
e ﬁ'-~.‘,
2
|| B\ B Ba, o
&, zo
<
-2}
B ’:(ﬁ)
-4

F1G. 9. Eigenvalues for N, = 1000.
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Integrating by parts, and using the known NATURE OF MOVING DISCRETE SOURCE
properties of u,(y,x), we obtain the transform For a moving source that releases energy in
identity arbitrary, discrete amounts, at arbitrary, dis-
h crete points (in the manner of spotwelding) (see
<u,, F'> = u(B,) [F’(l) + A F(l)] Fig. 2), the source term is given by
J
, h X, y,t) = i0(x — x)0(y — y) ot — t,).
- 0 [F © - %F(O)] R f0) ey N0 L 00— e =)
(29)
SOLUTION

Taking transforms of equation (1) and the boundary and initial conditions by means of the
transform

1 1
<u,, F) = (I) Un(Vmx) F(x) dx = g F(X) th(ymx) dx = f(ym) (30)
where
Yl = Bums m=1,23,... (18a)
gives rise to the partial differential equation
o*w [2 (h1+-hzﬂ q 16w
W('Yrmy, t) = | Vm +T w()’m’y’ t) + —,;(ym’ya t) - a'é_t'(’)}m’y, t) (31)

and its accompanying boundary and initial conditions:

ow h
1. b; (yma Oa t) it E w()’m’ 0: t)

ow h
2. _5; (ym9 a, t) = - E W('yma a, t)

30 Wm0 = f(hm )

and where

qVm ¥, 1) = (I) Q(x, ¥, ) Up(yx) dx (32)

and
£ 1) = [ F5, ) 1) . (33)

Taking transforms of equation (31) and its accompanying initial condition by means of the
transform .

(u, Fy = z“—un(eny) F()dy = };F(y) u(0,9)dy = £(6,) (34)

where

b,a=p, n=123,... (18b)
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gives rise to the ordinary differential equation
dw (hy + hy) o
— t 292412 Bns t) = — (Vs Oms
g7 U O ) + [ym + 0+ | W O ) = 40, O 1)

and its initial condition:

1' w(yma 0'" 0) = f(‘y"l, BII)
where
q(Yms Ons 1) = {) q(ms > 1) un(0,y) dy
and
S Om: 0a) = (I) S ms y) u(0,y) dy.
The solution to equation (35) usin_g the initial condition is
W(ms O 8) = f (¥ms 0,) €XP (— wm.nt) + o/k g(Ypm, O, ) *exp (— 'pm, o)

where
Vim,n = a[vi + 67 + (h‘—k;@]
and
O ) XD (~ V) = J A0 O ) XD [~ Y olt = )] .
Using equation (29), equation (40) becomes
(Vs O 1) *€XP (— Y, o) = ;21 Q; Un(VmX;) Un(0,y;) €XP [— Y, ot — 1))]

and equation (38) can be written as

J
W('}’,,,, em t) = f()’ms on) exp (_ wm.nt) + a/k .;1 Qj um(‘)’mxj) un(euyj) exp [— lpm, n(t - tj)]'

Using the expansion equation the solution can be written as

Y <y WO, )

o U, (VnX)

W(X, 3 t) = Z Cm um(me) =
m=1
m=1

2N BwOmnd)
"1 Z 5+ N30 + 25 0] "=
where

hl
Nm(l) = —k
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(33)

(36)

(37

(38)

(39)

(40)

(40a)

(38a)

(41)

(42)
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and similarly

Wm0 = 3. Gy ul6) = Z Lo Pl S D u6,9)

n=1

2N B WOm 00
" Z 072 + N3da) + Vgl O

ha
Npgifa) = T

where

(44)

Dropping the vector notation, the solution becomes

IANAY B2 B2 W O ) ) (6
et = “’Z‘ Z, 32+ N3) + 2N, 0106 + N3a) + 2Npfa] )

or in a slightly expanded form

W(x y t) =i i i ﬂriﬂlzl um('y;ux) u,.(o,,y)
ht) = L [8: + N&dD) + 2N (D][7 + Nifa) + 2Npa)]

al J
{g{) F(x’ )’) um(’ymx) un(ony) dx dy + d/k 'Zl Qj um(ymxj) un(enyj) exp (!pm,ntj)} exp (‘_ ll’m, nt) (46)
i=
for0<x<l0<y<agandt <t
For
ti<t<ti+l3i=1’2’3’--- (47)
where

1<i<J (48)

the solution is the same as equation (46), except that the summation on j stops at i instead of J.
For

0<t<ty (49)

then the solution, equation (46), has none of the terms involving the summation on j.
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Résumé—1 ’équation de la conduction est résolue pour la distribution de température dans une plaque

mince ayant des pertes par convection sur toutes ses frontiéres et chauffée par une source ponctuelle en

mouvement. La solution est basée sur les propriétés d’un opérateur hermitien et de ses vecteurs orthogonaux
de base.

Zusammenfassung—Die Leitungsgleichung wird geldst fiir die Temperaturverteilung in einer diinnen

Platte, die von einer bewegten Einzelquelle beheizt wird und Konvektionsverluste an allen Berandungen

aufweist. Die Losung beruht auf den Eigenschaften eines Hermite Operators und orthogonalen
Basisvektoren.

Annorayus—Pemenye YpPaBHeHMA TEIUIONPOBOTHOCTH WCHOONb3YETCA [JIA NONyYeHHA

TeMIIEPATYPHOT0 PAaClpefeeHHA B TOHKOM NIACTHHE, HATPEBAEMON JBIIKYLIMMCA OUCKpeT-

HEIM WCTOYHMKOM NpPU HAJIMYHM KOHBEKTUBHHEIX TEIUIONOTEPhL HA BCEX I'PaHMUAX. Pemenue
OCHOBAHO HA CBOHCTBAX OmepaTopa PMUTA U €r0 OPTOTOHANLHHX §a3MCHHX BEKTOPAxX.
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